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Published online: 26 June 2006 – c© Società Italiana di Fisica / Springer-Verlag 2006
Communicated by W. Henning

Abstract. The central collision of 40Ar and 208Pb is studied considering the ellipsoidal deformations and
isovector dipole mode of motion in the approaching phase. The collective energy dissipation is suggested
to originate from the Fermi surface deformation which is treated as a kinematically independent mode
of motion within the canonical Lagrange-Rayleigh dynamics. The possible extensions of the approach
are discussed. The potential energy surface, calculated using the generalized (folded) surface potential, is
studied. The saddle point in the potential energy surface lying at the border of strongly deformed compact
configurations is located. The potential energy at this point is about 10MeV smaller than that of the
ions touching each other in the spherical shape. The examination of trajectories followed by the system
in its evolution shows that the inertia forces strongly hinder the motion of ions along the potential energy
valley. The collective energy dissipated during the approach is found to be smaller than the difference in
the potential energies at saddle point and at the touching configuration of unpolarized ions.

PACS. 24.10.-i Nuclear reaction models and methods – 25.70.Jj Fusion and fusion-fission reactions

1 Introduction

The recent experiments aiming at the production of very
heavy and super-heavy nuclei have revived the interest in
establishing the conditions for the heavy-ion fusion [1].
Such conditions have been explored for a long time (with
much success for not excessively heavy ions) by many
physicists and, in particular, in a series of papers included
in ref. [2]. In these studies it was found that the most im-
portant circumstance making fusion possible for the two
colliding nuclei is provided by the passage beyond the sad-
dle point in the potential energy surface of the nucleus
which may be produced in the collision.

The conditions for fusion must be looked for in the
dynamics of the collision and depend on the inertial prop-
erties and on the potential forces of the system. The other
important element lies in the coupling between the collec-
tive and intrinsic degrees of freedom responsible for the
collective energy dissipation. This coupling plays a very
important role in the fusion reaction. Indeed, the fusion
takes place when the initial kinetic energy of approaching
ions is shared between numerous intrinsic degrees of free-
dom, i.e. is dissipated. The coupling of collective modes

a e-mail: mikhailo@csnsm.in2p3.fr

between themselves and with the intrinsic degrees of free-
dom produces different effects depending on the duration
of the process. The rate of the energy dissipation in the
fast changes of configuration differs much from the dis-
sipation rate when the evolution is slow. In other words
the “memory” properties of nuclear systems are also of
importance.

With the increasing Z-number of the nucleus, which
is expected to be produced in the collision, the Coulomb
repulsion pushes the potential energy ridge outside of the
space of compact forms with overlapping densities of the
collision partners. Then, the possibility of overcoming the
ridge becomes dependent on the configuration attained
by the colliding nuclei just before establishing the con-
tact. Thus, the description of very heavy-nuclei forma-
tion demands the knowledge of dynamical effects taking
place before the unification of ions. The Coulomb re-
pulsion flattens the potential energy surface inside the
ridge. For this reason, the conditions for the fusion of
very heavy nuclei at lowest incident energies and small
values of angular momentum are of special interest. These
conditions are discussed in this paper taking as an exam-
ple the 40Ar + 208Pb central collision. We study here the
role of the inertia properties of ions and the energy dis-
sipated via the excitation of the quadrupole and dipole
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degrees of freedom. The role of the “memory effects” in
slowing down the information passing from one degree of
freedom to another one is examined. The study reported
here is done within the approach of refs. [3–5]. This ap-
proach is presented here in a new and more transparent
way and is generalized for the description of collisions in
non-symmetrical systems and includes the participation
of the isovector dipole modes of motion.

The composition of the paper is as follows:

– In sect. 2 the collective variables and the equations
of motion describing the evolution of approaching
ions are presented. The ellipsoidal deformations of ap-
proaching ions and the isovector dipole mode of mo-
tion within them are included in the collective space.
The collective energy dissipation is considered to orig-
inate from the quadrupole deformation of the Fermi
surface of ions, which is considered as being kinemati-
cally independent from the other modes of motion. The
evolution of collective variables is of the type of the
Lagrange-Rayleigh classical mechanics which makes
possible the definition in an unambiguous way of the
collective energy and its dissipation rate.

– In sect. 3 we examine the potential energy surface us-
ing the generalized (folded) surface potential. The 3-
dimensional potential energy surface exhibits a “ridge”
within the configuration space describing the motion
of separated ions and the saddle point corresponding
to strongly deformed ions in compact configurations.
The saddle point is situated very near the border of
the compact configuration space.

– In sect. 4 the trajectories of the system of approach-
ing ions in the configuration space of the model are
examined. The role of the inertia properties of ions is
studied. The notion of a “separatrix” trajectory is in-
troduced. The evolution along this trajectory leads to
the saddle point where an unstable equilibrium of the
nucleus-nucleus interaction forces is established.

– In sect. 5 the energy dissipation occurring during the
approach is considered. It is found that, at the mini-
mal incident energy of collision at which the contact
between the ions is realized, the dissipated collective
energy is smaller than the difference of the potential
energies in the saddle point and in the configuration of
two “unpolarized” (spherical) ions at the contact. The
role of the “retardation” effects in establishing the suf-
ficient conditions for fusion is briefly discussed.

– In sect. 6 a recapitulation of the results of the study is
presented.

– Two appendices follow the main text with the dis-
cussion of the quantum-mechanical substratum of the
Lagrangian (appendix A) and of different dissipation
mechanisms (appendix B).

2 Equations of motion

The approaching ions are considered as droplets of incom-
pressible nuclear matter homogenously distributed within

a sharp surface. In the ground states, the ions are sup-
posed to have spherical shape and zero value of the angu-
lar momentum. The center of mass of the nuclear system
coincides with the origin of the coordinates frame hav-
ing the z-axis coincident with the direction of ions mo-
tion. Consistently with these suggestions, the ions keep
the axial symmetry during their evolution with their sym-
metry axes remaining coincident with the z-axis of the
reference frame. We strengthen these suggestions assum-
ing the spheroidal shape of ions. The instantaneous values

of the semi-axes of an ion “number i” a
(i)
k (t), (i = 1 or 2-

the ion’s number, k = x, y, z-indexes of the coordinates
axes) will be related with the parameter ηi as follows

a
(i)
x = a

(i)
y ≡ a

(i)
⊥ = Ri ηi, a

(i)
z ≡ a

(i)
‖ = Ri/η

2
i ,

where Ri = r0A
1/3
i (r0 = 1.18 fm) (1)

(here Ri is the global radius of the ion in its ground state;
in the following we shall use an equivalent deformation
parameter αi = 1− ηi).

2.1 Elastoplastic model

The dynamics of approaching ions is described by the evo-
lution of the elongation parameter L(t) (the distance be-
tween the centers of mass of the ions) and by the intrinsic
quadrupole moments of the ions qi(t). These quantities
are defined as follows

L(t) = | L1(t)− L2(t) | , (2)

Li(t) =
1

Ai

∫

Vi

dx z n(x, t) , (3)

qi(t) = m

∫

Vi

dx
[

2(z − Li)
2 − x2 − y2

]

n(x, t). (4)

Here Li is the z-coordinate of the center of mass and Ai is
the number of nucleons in each of the two ions. Further,
m is the nucleon mass, n(x, t) is the particle density and
the integration goes over the volume Vi of the ion.

Equations determining the evolution of these variables
are obtained on the basis of virial theorems1 integrat-
ing with appropriate weights the kinetic equation for the
Wigner transform [10] of the one-body density matrix

〈x1;σ1, ν1 | ρ̂(t) | x2;σ2, ν2〉

(see, e.g., ref. [11]). The relation between the Wigner
transform (f(p,x, t)) and the density matrix (summed
over the nucleonic spin-isospin indexes in the study of the

1 The method of virial theorems for solving the hydrodynam-
ical equations was introduced by S. Chandrasekhar [6]. The
references to its applications for the nuclear problem studies
may be found in [7] or in the earlier published review papers [8]
and [9] containing essentially the same material.
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isoscalar modes of motion) reads

f(p,x, t) =

1

(2πh̄)3

∫

ds e−ip·s/h̄
∑

σ,ν

〈

x+
s

2
;σ, ν |ρ̂(t)|x− s

2
;σ, ν

〉

.

(5)

In this relation σ = ±1 (ν = ±1) have twice the value of
the spin (isospin) quantum number of the single-particle
state contributing to the density matrix. The Wigner
transform of the density matrix allows to determine the
mean value of any function depending on the coordinates
(x) and the linear momentum (p) of a nucleon.

The kinetic equation is

∂f(p,x, t)

∂t
+

p

m
· ∇xf(p,x, t)

− 2

h̄
sin

(

h̄

2
∇(U)
x · ∇(f)

p

)

U(x, t) f(p,x, t)

= −Icls(p) (6)

Here ∇(U)
x (∇(f)

p ) are the gradient operators differentiat-
ing, respectively, in the space of coordinates x and in the
space of linear momenta p. The first of them operates
on the potential function U(x, t) and the second on the
Wigner function f(p,x, t).

The left-hand side of this equation contains the terms
corresponding to the time-dependent Hartree-Fock the-
ory and describes the independent motion of nucleons
in the mean field. On the right-hand side of it appears
the Wigner transform of the so-called “correlation term”
present in the equation for the one-body density matrix,
the term responsible for mixing of many-body configura-
tions. In the equation for the f(p,x, t)-function this term
appears under the guise of the “collision integral” Icls(p)
of the classical kinetic theory and describes the dissipa-
tion of the collective energy followed by its transformation
in the statistical excitation energy. In the case of an ho-
mogeneous distribution of the matter inside the ions this
quantity must be position independent and satisfies the
conditions known in the classical kinetic theory [12,13]:

∫

dp Icls(p) =

∫

dpp Icls(p) = 0, (7)

∫

dpp2 Icls(p) = 0, (8)

otherwise the conservation rules of the basic invariants
(particle number, total linear and angular momenta and
the total energy) would be violated.

The integration of f(p,x, t) goes first over the linear
momenta giving rise to relations between the quantities
appearing in the classical description of extended systems
and called “attributes” of the nuclear-matter elements.
The following attributes are of importance in this work:

– the nuclear particle and matter densities:

ρ(x, t) = mn(x, t) = m

∫

dp f(p,x, t) ,

– the components of the collective velocity field:

ui(x, t) = (1/ρ)

∫

dpp f(p,x, t) ,

– and the pressure tensor:

Pi,j(x, t) = (1/m)

∫

dp (pi−mui)(pj−muj) f(p,x, t) .

The first step of integration establishes relations between
the attributes of the nuclear-matter elements involving the
well-known continuity equation and the other equations
which can be found in the references quoted in the foot-
note1.

The next step in arriving at virial theorems consists
in integrating in the position coordinates the equations
obtained in the first step. This integration leads to the
dynamical equations of motion for the collective variables
in eqs. (3) and (4):

µ
d2 L

dt2
= −∂U(L, q1, q2)

∂L
, (9)

1

2
q̈i = κi(qi)q̇

2
i − wi(L, q1, q2) + πi, (10)

In these equations µ = m(A1 ·A2)/(A1+A2) is the reduced
mass of the two ions. The quantity

U(L, q1, q2) =

∫

V1+V2

dxW (x, t)n(x, t) (11)

is the common collective potential determined by the local
mean-field potential W (x, t) including the Coulomb and
nuclear interactions between the ions and within them. Its
properties and those of the function

wi =

∫

Vi

dx

(

2z
∂W

∂z
− x

∂W

∂x
− y

∂W

∂y

)

n(x, t) (12)

will be discussed in the next section.
The velocity ui determines the kinetic energy of col-

lective flow within the ions (T coll
qi

= mi(qi)q̇
2
i /2) via the

effective mass parameter mi(qi) and the function

κi(qi) =
1

q̇2i

∫

Vi

dx
[

2u2‖ − u2
⊥

]

i
n(x, t) (13)

u‖(x, t) = uz(x, t) and u⊥(x, t) = ux(x, t)ex + uy(x, t)ey;
ek being the unit vectors of the reference frame.

Equation (10) contains the quantity

πi(t) = 2

∫

Vi

dx
[

P‖(x, t)− P⊥(x, t)
]

(14)

(P‖(x, t)=Pz,z(x, t), P⊥(x, t)=(Px,x(x, t)+Py,y(x, t))/2).
The evolution of this function, as found from the virial

theorems method, is given by

π̇i + 2

∫

Vi

dx

(

2
∂uz
∂z

P‖(x, t)

−
[

∂ux
∂x

Px,x(x, t) +
∂uy
∂y

Py,y(x, t)

])

i

= −πi
τi

. (15)
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On the right-hand side of eq. (15) appears the quantity
−πi/τi which is the collision integral Icls(p) integrated
over the volume of an ion and treated in the mean relax-
ation time approximation. Note that the collision integral
does not contribute to the dynamical equations for L and
qi variables

2: this property is a consequence of eqs. (7).
The velocity field ui(x, t), the mass parameter mi(qi)

and the function κi(qi) are calculated as in ref. [5] assum-
ing the simplest (linear in coordinates) expression which
is consistent with the assumption on the spheroidal shape
of ions:

ui(x, t) = Ci
‖(t) zez + Ci

⊥(t)
(

x ex + y ey
)

. (16)

The position-independent functions C i
‖(t) and Ci

⊥(t) are

found from the relation [6]

q̇i =

∫

Vi

dx ρi(x, t)(ui · ∇)
(

2(z − Li)
2 − x2 − y2

)

taking into account the incompressibility of the nuclear
matter (div ui = 0) and the axial symmetry of the system.
One has

(

∂uz
∂z

)

i

= C‖(t) = 4q̇imi(qi) ,

(

∂ux
∂x

)

i

=

(

∂uy
∂y

)

i

= C⊥(t) = −2q̇imi(qi). (17)

The relations between the functions depending on the
velocity field read

mi(qi) =
5

8mR2
iAi

1

η2i (1 + 2/η6i )
, (18)

κi(qi) = −
5

8mAiR2
i

1− 4/η6i
η2i (1 + 2/η6i )

2
, (19)

where ηi is the deformation parameter introduced in
eq. (1) and related with the quadrupole moment qi as

qi =
2

5
mR2

iAi

(

1

η4i
− η2i

)

. (20)

Using eqs. (17), (18) and (19), one obtains the follow-
ing expressions for the functions wi and κi:

wi(L, q1, q2) =
1

2mi(qi)

(

∂U(L, q1, q2)

∂qi

)

,

κi(qi) = −
dmi(qi)/dqi
4mi(qi)

. (21)

Taking into account eq. (17) and defining the compo-
nents of the pressure tensor integrated over the volume
as

Πi
z,z ≡ Πi

‖ and Πi
x,x = Πi

y,y ≡ Πi
⊥ , (22)

2 Note also that the Planck constant h̄ does not appear ex-
plicitly in the obtained relations. However, the quantum back-
ground of the approach is not affected by the transformations
of the equation for the density matrix (see also appendix A).

one arrives at the following form of eq. (15):

π̇i = −
[

8mi(qi)

(

2Π‖ +Π⊥

)

i

q̇i +
1

τi
πi

]

. (23)

The quantities Π
(i)
‖ and Π

(i)
⊥ enter in the expression

for the kinetic (Fermi) energy of intrinsic motion [8]. Esti-
mated on the basis of the Fermi-gas model (at zero value
of the nuclear “temperature” (see appendix A), they are

Π
(i)
‖ =

2

3
E(0)i



1 +
1

2

πi

E(0)i

+
1

16

(

πi

E(0)i

)2

+ · · ·



 ,

Π
(i)
⊥ =

2

3
E(0)i



1− 1

4

πi

E(0)i

+
1

16

(

πi

E(0)i

)2

+ · · ·



 , (24)

where E(0)i = 3mv2FAi/10 is the zero-point kinetic energy
(vF being the nucleon’s velocity on the Fermi surface) and

(· · · ) stands for the terms of higher orders in (πi/E(0)i ).
In eqs. (24) the πi-independent terms are dominant.

This justifies the approximation in which one retains only
the terms up to (πi/E(0))2 in the kinetic energy of intrinsic
motion expression

T intr
i =

1

2

(

Π‖ + 2Π⊥

)

i

= E(0)i +
π2i

16E(0)i

(25)

and only the first (πi-independent) term in the combina-
tion of Π‖ and Π⊥ functions appearing in eq. (23). Then
one obtains:

– the expression for the energy of collective motion:

Ecolli ≡ Ei − E(0)i

=
µ

2
L̇2 +

∑

i=1,2

(

Tqi
+ T coll

πi

)

+ U(L, q1, q2), (26)

where

T coll
πi

=
π2i

16E(0)i

, (27)

– and the simplified form of eq. (23):

π̇i + Fi(qi)q̇i = −
1

τi
πi , (28)

where Fi(qi) = 16mi(qi)E(0)i .

Retaining only the dependence on L and qi in the po-
tential function U one arrives at the closed set of equations
for the collective variables L(t), qi(t) and for the quantities
πi(t). The set includes eq. (9), eq. (28) and the equation

d

dt
(mi(qi)q̇i) = −

∂U

∂qi
+mi(qi)πi , (29)

The equations of motion (9), (28) and (29) may be cast
into the Lagrange-Rayleigh form [4] associating πi(t) with
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the time derivative of an “intrinsic collective variable”, i.e.
assuming that πi(t) = ζ̇i(t). It means that the equations
of motion and the expression for the collective energy may
be written as [14]

d

dt

∂L
∂Q̇n

− ∂L
∂Qn

= − ∂R
∂Q̇n

, (30)

∑

n

Q̇n
∂L
∂Q̇n

− L = Ecoll . (31)

Here L and R are, respectively, the Lagrangian and the
Rayleigh dissipation function depending on the general-
ized collective coordinates Qn and velocities Q̇n.

The Lagrangian may be easily established noticing
that the expression for the energy containing the sum of
kinetic and potential energies determines it up to terms
linear in generalized velocities [14]. Noticing also that the
coupling between the qi and πi variables is represented
by expressions linear in ζ̇i, one includes in the Lagrangian
the difference of the kinetic and potential energies and
adds to it coupling terms linear in ζ̇i. Then one finds the
Lagrangian and Rayleigh functions, which are consistent
both with the equations of motion for L, qi and πi and
with the expression for the collective energy in eq. (26):

Lquad =
µL̇2

2
+
∑

i=1,2

Ti − U(L, q1, q2) , (32)

Rquad =
∑

i=1,2

Rquad
i ≡

∑

i=1,2

ζ̇2i

16τiE(0)i

. (33)

In the Lagrangian the first term is the kinetic energy
of the relative motion of ions, while the second term

Ti =
mi(qi)

2
q̇2i +

ζ̇2i

16E(0)i

+ 2ζ̇i

∫ qi

0

mi(q
′)dq′ (34)

includes the kinetic energies of collective flow T coll
qi

, col-

lective parts of the intrinsic kinetic energy T coll
πi

and the
functions describing the coupling of deformations in the
coordinate and momentum sectors of the phase space of
the ions.

The canonical formulation of the dynamics allows to
define in an unambiguous way the dissipation rate of the
collective energy:

dEcoll
dt

= −dEstat
dt

= −2R . (35)

In the considered case the dissipation function R = Rquad

is defined as in eq. (33).
The nature of the “collective part of the intrinsic ki-

netic energy” and the time scale of the memory effects
can be seen noticing that in isolated nuclei and in col-
liding ions at large distances eqs. (28), (29) describe the
properties of the Giant Quadrupole Resonance (GQR):
the position of its centroid and its spreading width [15,8].
These GQR parameters are associated with the real and

imaginary parts of the frequency of small-amplitude time-
dependent shape variations around some fixed (or slowly
varying with the time) value of qmean

i . The frequency of

these vibrations (ωGQR
i ) is related to the quantity Fi(qi)

defined in eq. (28):

ωGQR
i ≈

√

2Fi(qi) =
√
2
vF
Ri

√

mi(qi)

mi(0)

showing that its inverse is of the order of the time passed
by a nucleon between its collisions with the ion surface.
The spreading width of GQR corresponds to the decay of
vibrations involved in it during a time about 2–3 times
larger.

2.2 Isovector dipole mode participation

The Coulomb interaction of an ion (ion “number i”) with
the electromagnetic field produced by its reaction part-
ner (ion “number j”) adds to the energy of the i-th ion a

term Edipi = −Ejdi, where Ej = −eZjL/L3 is the electric
field intensity at the center of mass of the ion “number
i” and di is its electric dipole moment. The effects of this
interaction may be estimated in a simple way using the
information on the nuclear response to the dipole compo-
nent of the electromagnetic field. Atomic nuclei respond
to it as damped harmonic oscillators, with the effective

mass Ddip
i and strength parameters Cdip

i corresponding to
dipole vibrations. These parameters can be related with
the sum rule of dipole electric excitations and the cen-
troid of excitation energy of the Giant Dipole Resonance
(GDR) [16]:

Ddip
i =

Ai

NiZi
m; Cdip

i = (ωGDR
i )2Ddip

i .

When A ≥ 100 the centroid of excitation energies of GDR
states satisfies an empirical rule:

h̄ωGDR
i ≡ h̄(Cdip

i /Ddip
i )1/2 ≈ 79A

−1/3
i MeV.

In heavy nuclei ΓGDR
i is typically equal to 5MeV.

The spreading width of GDR may be interpreted in
terms of viscosity βGDR

i (ΓGDR
i ≡ h̄ βGDR

i ). Then, the
dynamical equation describing the dipole mode excitation
reads

Ddip
i

(

d̈i +
Cdip
i

Ddip
i

di + βGDR
i ḋi

)

= e2ZjL/L3 (36)
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and corresponds to the Lagrange-Rayleigh dynamics3 with

Ldip =
∑

i

Ldipi ,

Ldipi =
Ddip
i

2
ḋ2
i −

Cdip
i

2
d2
i + e2ZjL · di/L3 ,

Rdip =
1

2

∑

i

Ddip
i βdip

i ḋ2
i . (37)

2.3 Viscous limit

The evolution of the quantities πi contributes to the forces
restoring the equilibrium shape of the ions. The strength
of such forces and their character depend much on the
speed of the deformation changes: they show themselves
as elastic forces when the shape variations are fast, and
are at the origin of the “viscous” behavior of the nuclear
matter when the evolution of the shape is slow compared
with τi. In this case the time derivative of πi in eq. (28)
may be neglected so that the evolution of the system is
described by eqs. (9) and (29) with

πi = −16τiE(0)i mi(qi)q̇i . (38)

In this approximation, which we call “viscous”, the
equations of motion change their outlook: their number is
reduced and, in the equation for the second time derivative
of qi(t), appears a term proportional to q̇i. This gives to
this equation an expressly time-irreversible form. Further,
the time derivative of the collective energy as given by
eq. (35) becomes proportional to the square of q̇i functions.
To keep the canonical form of the new equations of motion
the definition of the Lagrangian and Rayleigh function
must be changed: the quantities πi should be taken out
from eq. (32) for the Lagrangian (and from eq. (26) for
the collective energy) and be placed in the new Rayleigh
function. Equation (35) for the energy dissipation remains
valid after changing Rquad for Rvisc

quad which becomes

Rvisc
quad =

1

2

∑

i=1,2

βvisc
i

(

mi(qi)q̇
2
i

)

(39)

with
βvisc
i = 16τiE(0)i mi(qi).

Considering the combined effect of dipole and
quadrupole degrees of freedom we write

dEvisccoll

dt
= −

∑

i

[

βvisc
i mi(qi)q̇

2
i + βdip

i Ddip
i ḋ2

i

]

. (40)

When the distribution of the matter within the ions
becomes frozen (q̇i = ḋi = 0), the collective energy is

3 The invariance properties of collision integral do not con-
cern the dissipative properties of the isovector modes of mo-
tion. The structure of eqs. (36) and (37) is similar to that de-
scribing the energy dissipation by the quadrupole deformation
of ions in the “viscous” approximation (see below).

conserved. It is so, because the variations of the kinetic
energy of the relative motion become exactly compensated
by those of the potential energy.

The mean relaxation time parameter τi appearing in
eq. (28) is parameterized as

τi = ξ

(

4

3

)2
(

r0A
1/3
i

vF

)

. (41)

The value ξ = 1 corresponds to simple arguments formu-
lated in ref. [8], where it is found that with this choice for
τi the spreading widths of GQR are reasonably well re-
produced. Then βvisc

i is close to the wall-formula friction
parameter βwall

i . At small deformations [17]:

βwall
i =

3

2

vF

r0A
1/3
i

and βvisc
i = ξ

1

2

(

4

3

)3

βwall
i . (42)

A better reproduction of experimentally found spreading
widths of GQR [18] is achieved taking ξ somewhat bigger
than 1. This would lead to a bigger difference between
βvisc
i and βwall

i .
In most of publications concerning the fusion, βwall

i
serves as a guide for learning the role of friction (admitting
sometimes the necessity of its re-normalization). For this
reason we have made most of our calculations taking ξ = 1
in order to be reasonably close to the experimentally found
properties of giant resonances and not to be too far from
the wall formula for friction in the limit of slow changes
of the shape. The results of calculations will correspond
to this choice of ξ when not stated otherwise. A short
discussion on the nature of this parameter is presented in
appendix B.

3 Potential function

The potential

U(L, q1, q2) = Ufolded(L, q1, q2) + UCoul(L, q1, q2),

its partial derivatives ∂U/∂L, ∂U/∂qi and the functions
wi(L, q1, q2) have been calculated for the system formed by
approaching 40Ar and 208Pb nuclei using the generalized
surface potential of ref. [19] in the form of a folded Yukawa
plus exponential interaction:

Ufolded =
cs

8π2a4r20

∫

Vi

d3r1

∫

Vj

d3r2

(

2− σ

a

) exp(−σ/a)

σ/a

(43)
with the parameters cs and a taken from ref. [19]. For the
Coulomb part of the potential, the homogeneous charge
distribution within the spheroidal droplets with sharp sur-
faces is assumed:

UCoul =
ZiZje

2

2

∫

Vi

d3r1

∫

Vj

d3r2
1

σ
. (44)

In eqs. (43) and (44) σ = | r1,2 | is the distance between
the points r1 and r2.
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Fig. 1. Potential function U(L = Lcont + S, αAr, αPb) for the
ratio αAr/αPb = 3 as a function of αAr and the distance be-
tween the ion surfaces S.

This potential has been tested in different mass re-
gions giving a rather satisfactory description of different
phenomena including heavy-ion elastic collisions, fusion
and fission. The calculations reported in ref. [19] show, in
particular, that the 248Fm nucleus, which is one of possi-
ble products of the 40Ar + 208Pb reaction, has a shallow
fission valley with a barrier of about 3MeV.

Expressions (43) and (44) are used in our study to cal-
culate the potential energy produced by the nuclear and
Coulomb interactions within the same ion and the inter-
ions interaction potential, taking in an appropriate way
the volumes Vi, Vj , and the numbers of protons Zi, Zj . We
use the technique of ref. [20] based on the Ostrogradsky-
Gauss theorem to convert the volume integrals into the
surface integrals. For the axially symmetric shapes con-
sidered in the paper we finally obtain threefold integrals
instead of double-volume integrals.

The potential energy of the model considered here
depends on three variables, which introduces some dif-
ficulties in its visualization. Figure 1 shows the poten-
tial energy surface for the ratio of deformation param-
eters αAr/αPb = 3 which is close to the one found in
the calculations describing the collisions of Ar and Pb at
the near-barrier energies (see next section). In the figure
the potential is presented as a function of αAr and of the
distance between the surfaces of the ions S = L − Lcont,
where

Lcont(αAr, αPb) =
RAr

(1− αAr)2
+

RPb

(1− αPb)2
. (45)

From this figure one sees a dominant role of the Coulomb
repulsion at large distances between the surfaces of ions
and the drastic changes in the potential energy produced
by the nuclear interaction when S becomes small. The
picture shows the “ridge” where

(

∂U

∂αAr

)

L,αPb

=

(

∂U

∂αPb

)

L,αAr

= 0. (46)

Fig. 2. Lines of zero value of partial derivatives of the potential
in αAr (solid line) and in αPb (broken line) as a function of
L/(R1 +R2).

The ridge is situated at the boarder of the compact config-
uration space. One sees that, with the increase of prolate
deformation, the potential energy at the ridge decreases,
and that the ridge flattens and gives way to the saddle
point.

The deformation parameters found from eq. (46) are
shown in fig. 2 in their dependence on L; in this and in the
following figures L is given in the units of (RAr +RPb). In
the interval 1.178 < L < 1.5 each curve has two branches.
The deformation parameters for the lower branches are
very small, decreasing asymptotically as L−3 when L in-
creases. Thus, the lower branch is close to the line of the
lowest potential energy of two very rigid ions.

Near the point L = 1.178, where the branches join, the
nuclear interaction becomes dominant, and the potential
energy is the lowest in configurations with a strong pro-
late deformation. These configurations are represented in
the upper branch of the curves. All along this branch Ar
ions have prolate deformations, and the Pb ions become
prolate at L-values a little bit larger than at the point
where the branches join. Along the upper branch the dis-
tance between the surfaces of the ions (S) is very small
and decreases with the increase of deformation parame-
ters accompanied by the increase of Lcont. At the end of
this branch the solution of eq. (46) approaches the do-
main of compact configurations where the matter of two
ions is overlapping. Note, that the deformation of Pb is
much more pronounced than that of Ar in both branches
of solutions of eq. (46).

In fig. 3 the partial derivative | (∂U/∂L)α1,α2
| at the

ridge is shown. It decreases along the upper branches of
the curves presented in fig. 2 when S decreases. The con-
figuration in which

(

∂U

∂α1

)

L,α2

=

(

∂U

∂α2

)

L,α1

=

(

∂U

∂L

)

α1,α2

= 0 (47)

corresponds to the “saddle” in the potential energy surface
forming a barrier in the L-direction and a valley in the di-
rection of αAr and αPb. These relations are satisfied when
αAr ' 0.08, αPb ' 0.3 and L ' Lcont ' 1.72(RAr +RPb).
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Fig. 3. Partial derivative (∂U/∂L) at the “ridge” as a function
of S.

4 Trajectories of colliding nuclei

The equations of motion have been integrated numerically
for the case of 40Ar + 208Pb central collision, and the time
dependence of each of the collective variables has been
found. The ensemble of these data determines “the sys-
tem’s trajectory in the collective phase space”. The trajec-
tories have been studied for several values of the incident
energy (E0).

The conditions of forming a long-living (stationary)
state before the contact have been examined in this way.
The solutions of dynamical equations fall into two cat-
egories: first, describing the quasi-elastic scattering (low
energies) and second, corresponding to the formation of
compact configurations (higher energies). In the solutions
of the first category L→∞ when t→∞. To be associated
with the formation of a stationary state, the asymptotic
dependence of the L variable with time must change: it
must tend to a certain finite value at t→∞. The station-
arity conditions of a state follow from eqs. (9), (10), (28)
after throwing from them all terms containing the time
derivatives. Then, from eq. (28) one finds that in the sta-
tionary state π1 = π2 = 0. In this case eq. (10) says that
wAr(L, q1, q2) = wPb(L, q1, q2) = 0 and from eq. (21) one
deduces that eq. (46) is satisfied. Finally, from eq. (9) it
follows that in the stationary state the partial derivative
of the potential in L also vanishes. These relations define
the configuration where the potential has a stationarity
point. Naturally, they are satisfied in the lowest-energy
(heated) state. They are equally well satisfied in the local
pits in the potential surface, and also at the saddle points
of the potential. The trajectory stops reaching each of such
points. This may happen at several values of incident ener-
gies of colliding ions leading to reactions of different types.
The lowest in the energy stationarity point, at which the
approaching nuclei arrive, is of course, the saddle point
found in our analysis of the potential energy surface.

The calculations show that at energies smaller than
4.92MeV/n (196.8MeV incident energy in the laboratory
frame) no contact between the nuclei is established. The
larger energies correspond to events at which the ions over-
come the potential energy ridge and come to a contact

Fig. 4. Distance L(t) for 4 different values of the incident
energy E0 (MeV/n).

forming the compact Z, A = 100, 248 nuclear system. In
the case of fusion this corresponds to formation of Fer-
mium isotopes. For a systematic study of the dynamics
in compact configurations an extension of the theoretical
model is needed4. Thus, we stop calculations at the mo-
ment when the contact between the ions is established.
Nevertheless, the material of the paper allows to draw
some conclusions concerning the outcome of collisions in
which the contact between the ions is established.

In fig. 4 the curves L(t) are presented. One can see that
for energies smaller than 4.92MeV/n the time dependence
of L(t) is very close to that found in the elastic Coulomb
scattering of nuclei (see the curve for E0 = 4.6MeV/n).
When E0 = 4.92MeV/n the colliding ions slow down
in their approach and rest for some time at practically
constant distance without establishing a compact config-
uration. As in the elastic scattering at lower energies,
L increases after reaching a minimum. A very little in-
crease in E0 changes the trajectory: after passing for some
time at a practically constant value of the elongation
parameter, the ions come to contact (see the curve for
E0 = 4.921MeV/n).

An exceptional character of the curves corresponding
to the energies E0 = 4.92 and E0 = 4.921MeV/n is evi-
dent: these two curves are the closest to the “separatrix”
trajectory separating the “quasi-elastic” from the “fusion”
events. As it was shown before, the separatrix “stops” at
the saddle point where the two ions are strongly deformed
and touch each other. The relation between the deforma-
tion of the ions (αAr and αPb) and the elongation param-
eter L(t) at the trajectory corresponding to the incident
energy E0 = 4.92MeV/n is shown in fig. 5. In contrast
with the properties of the potential energy valley, the de-
formation of 208Pb on the trajectories remains much lower
than that of 40Ar (compare figs. 2 and 5). This feature is
explained by the larger inertia of the 208Pb nucleus com-
pared with the inertia of its reaction partner 40Ar.

4 This extension is necessary to determine the properties of
the “window” contribution to the energy dissipation and the
“driving forces” along the mass asymmetry degree of freedom.
The study of these problems is underway.
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Fig. 5. Trajectory of Ar (solid line) and of Pb ions (broken
line) in the α-L plane in the collision at E0 = 4.92MeV/n.
Arrows beside the lines indicate the time evolution.

The figures presented before give an impression of
the time scales involved in the nuclear approach at near-
barrier energies: typically, the ions pass less than 10−22 s
within the range of nuclear interaction before hitting each
other. This time interval is of the same order of magni-
tude as the mean relaxation time. The Coulomb scatter-
ing at the energies shown in the figures proceeds also very
fast. The short duration of this part of approach makes
impossible the creeping motion along the valley in the po-
tential energy. Thus the trajectories remain far away from
the saddle point configuration. Indeed, the maximal val-
ues of deformation parameters attained before coming into
the contact in collisions with the energies E0 = 4.92 and
E0 = 4.921MeV/n are much lower than the deformation
parameters at the saddle point (see fig. 5). This means
that the ions arrive at the saddle point after overcom-
ing the ridge in the potential energy surface, establishing
a contact and making a rebound to approach the saddle
point from the side of compact configurations.

Such conclusion is in accordance with the results of
ref. [3] in which the “elastoplastic” nuclear model oper-
ating with only one “geometrical” collective coordinate
was applied for the nuclear fusion study in compact con-
figurations. In this paper it was shown that the intrinsic
collective energy accumulated just after the contact is suf-
ficiently large to prevent the fusion of the ions if no extra
push energy is provided to them to overcome by an ap-
preciable amount the potential barrier. It must be noted,
however, that these results are obtained within a very re-
strictive approximation for the nuclear shape. They have
shown, however, that the Fermi surface deformation con-
stitutes one of the origins of the extra push.

In figs. 6a), b) the deformation parameters αAr, αPb

and the quantities πAr, πPb are shown as functions of the
time for the collision at E0 = 4.92MeV/n. The fast varia-
tions of these quantities take place during a time interval
of the order of 10−22 s which is comparable with the mean
relaxation time τ . The variations of αi and πi are in oppo-
site phases showing that the Fermi surface deformations

Fig. 6. Time dependence of α and π (in units of mc2) in the
collision at E0 = 4.92MeV/n. a) for 48Ar, b) for 208Pb.

have the character of elastic vibrations and are not the
consequences of the “viscous” flow.

5 Energy dissipation

The deformation of ions leads to the dissipation of collec-
tive energy interpreted here as its transformation into the
energy of statistical excitation (Estat). It may be found,
either by summing the terms in eq. (26), or by integrating
in time eq. (35). Both procedures have been used in order
to control the accuracy of the results. The second way is
found to be preferable for computational reasons.

In fig. 7 the statistical energy accumulated in the scat-
tering in the system of Ar and Pb nuclei (Estat) is shown
as a function of the incident energy. For E0 ≤ 4.92MeV/n
the statistical energy presented here includes the contri-
bution corresponding to the recoil phase. For larger ener-
gies, the values for Estat accumulated up to the moment
of the contact are given. The statistical excitation energy

Fig. 7. Statistical excitation energy Estat, i as a function of
the incident energy E0, (i = 1, 2, 3 standing, respectively, for
Estat, Ar+Pb, Estat,Ar and Estat,Pb); in the insert the energy
δEAr+Pb dissipated via GDR excitation in Ar and Pb.
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Fig. 8. Deformation parameters αAr (solid line) and αPb (bro-
ken line) at the moment of contact as a function of E0.

is peaked in the collisions with the incident energy close to
E0 = 4.92MeV/n, where its sum in the two ions is equal
to 6.5MeV. As a consequence of the difference in the de-
formation amplitudes of two ions the lighter partner (Ar)
is relatively more “heated” than the heavier (Pb) ion5. In
the insert of fig. 7 the contribution to the statistical exci-
tation energy from the isovector dipole mode in both ions
(δEAr+Pb) is shown. One can see that it is much smaller
than the contribution coming from the excitation of the
quadrupole modes.

The fast rise of the dissipated collective energy with
the incident energy when E0 is lower than needed for
establishing the contact (in the considered case up to
E0 = 4.92MeV/n) does not call for any discussion: the
greater is the energy in this domain, the closer is the ap-
proach of the ions and the stronger is their mutual in-
teraction. The decrease of the deformation of ions at the
moment of contact and of the statistical excitation en-
ergy, accumulated before it with the increasing incident
energy above this value, is due to the retardation in the
“information” transmission between different degrees of
freedom during the evolution of the system. The nucleus-
nucleus interaction depends on the elongation parameter
L. The collective energy dissipates when the changes in L
are transmitted to the dynamics of the deformation pa-
rameters qAr and qPb and then from qi to πi. To influence
the evolution of L, the transmission of signals of changes
in the state of the system in one direction must be followed
by the passage of corresponding signals in the opposite di-
rection. Such retardation effects are present even when the
relaxation in the momentum space is fast and the viscous
approximation can be used [21]. However, the deformation
of the Fermi surface makes this passage longer, accentu-
ating the phenomena related with them.

The importance of the retardation increases with the
velocity of the ions at the moment of the contact (i.e. with
E0) explaining the decrease of the dissipated energy and
also the decrease of the deformation of ions acquired before

5 The same feature of the evolution of fusing nuclei in the
compact configurations is reported in ref. [2].

Fig. 9. a) Potential energy Epot(t) (solid line) and the part of
kinetic energy EL(t) = µL̇2/2 (broken line); b) the polarization
energy Epol(t). Here and in fig. 10 the energies are given for
the trajectory with E0 = 4.92MeV/n.

the contact when the incident energy increases more than
needed to overcome the threshold for the contact [21]. The
dissipated energy is the largest in the trajectories close to
the “separatrix”: see fig. 8, which shows the deformation
of ions at the point of contact as the function of the in-
cident energy. So, in the study of events at the energies
substantially higher than the minimal needed for estab-
lishing the contact of ions, their deformation before the
contact is of minor importance.

Within the model the saddle point energy may be
estimated as the potential energy met by the colliding
ions at the plateau of the “exceptional trajectories”. The
potential energy along the trajectory corresponding to
E0 = 4.92MeV/n as a function of time is shown in
fig. 9a) together with the kinetic energy of relative mo-

tion EL = µL̇2/2. The plateau in the time interval from
400 fm/c to 600 fm/c is clearly seen here. The effective
barrier met by the colliding ions, estimated by the data
corresponding to this trajectory, is equal to Ec.m

0 −Estat =
158.6MeV (Ec.m

0 = 165.1MeV being the incident energy
in the center-of-mass reference frame).

More information on the dynamics of the system is
contained in fig. 9b). Here the potential energy of polar-
ization of ions is shown:

Epol = Epot −
ZArZPbe

2

L(t)
− Epot(L→∞).

The subtraction from the potential energy of the bulk
of the long-range Coulomb interaction and of the intrin-
sic energy of separated ions changes drastically the out-
look of the curve: the plateau disappears giving way to
a rather well pronounced minimum (at which Epol =
−10.7MeV). The figure shows that on the trajectory with
E0 = 4.92MeV/n the ions remain in the range of nuclear
forces for only a very limited time (about 2 · 10−21 s.).
Thus, the separatrix corresponds to somewhat larger in-
cident energies and the height of the effective potential
barrier is somewhat larger than quoted above.
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Fig. 10. Kinetic energy of collective flow Tq (solid line), and
energy of the Fermi surface deformation Tπ(broken line).

Fig. 11. Total statistical excitation energy as a function of
time for three different values of the relaxation time parame-
ter τ . The values of τ are given by ξ (see eq. (41) and the text
after eq. (42)).

In the region of the plateau in the potential energy,
the kinetic energy of translations µL̇2/2 is very small.
From fig. 10 one finds that the same is true for the ki-
netic energy of the intrinsic collective motion within the
ions Tq = TqAr

+ TqPb
. The intrinsic energy of the Fermi

surface deformation Tπ = TπAr
+ TπPb

turns out to be an
order of magnitude greater than Tq.

In fig. 11 the statistical excitation energy Estat at-
tained during the approach is shown as a function of time
for 3 different values of the relaxation time parameters τ .
The values of τ are given by the parameter ξ in eq. (41).
The value ξ = 1 is used in the bulk of calculations pre-
sented before; in the adiabatic regime it corresponds to the
“wall” friction parameter of ref. [2]. With the value ξ = 2
the systematics on the widths of GQR (see ref. [18]) is
reproduced. The value ξ = 1/2 corresponds to half of the
wall formula friction parameter. One sees that the differ-
ences in Estat at the contact point are very small. Equally
modest sensitivity to the value of τ is found for the other
characteristics of trajectories.

The general tendencies of the collective energy dissi-
pation in the Ar + Pb system are the same as reported
in ref. [5] for the collision in a symmetrical Mo +Mo sys-
tem. In particular, close values of the maximal statistical
excitation energy acquired before the collision in the two
systems are found.

It is a commonly used practice to associate the collec-
tive energy dissipation with the frictional forces propor-
tional to the time derivatives of deformation parameters.
Then, the rate of collective energy decrease is given by
the quadratic function of q̇i. As shown before, this sub-
stitution is reasonable when the evolution is slow and πi
are proportional to q̇i. Figure 5 and fig. 8 show that the
proportionality of πi and q̇i functions is lost when the
ions approach so much that the nuclear interaction be-
comes important: it introduces rapid changes in the shape
variations, and the retardation effects associated with the
Fermi surface deformation become important.

There is much uncertainty in the values of the fric-
tion parameters compatible with the relevant experimen-
tal data [21]. To reconcile the adiabatic theory with exper-
imental information one introduces the excitation energy
or/and the shape dependence of the friction force. We have
found that this technique is nothing but the simulation of
a more involved collective dynamics in which the elasto-
plastic properties of nuclei are included.

6 Summary and conclusions

The dynamical effects produced by spheroidal deforma-
tions of approaching heavy ions experiencing the central
collision are discussed in this paper in the framework of
a model in which the configurations of the system are de-
fined by three independent coordinates: the distance be-
tween the center of mass of ions and their quadrupole
moments. Such parametrization encompasses the close-to-
spherical shapes of the ions typical for the approach phase
in the heavy-ion collision and also very deformed shapes of
the ions which could be met in the case of nuclear fission.

The potential energy dependence on the collective co-
ordinates is evaluated by summing the contributions of
Coulomb and nuclear interactions. The latter contribu-
tion is found by using the folding procedure applied to
the Yukawa + exponential interaction.

The model takes in account the “memory effects”
which are associated with deformations of the Fermi sur-
face. The quantities measuring the Fermi surface deforma-
tion are treated as kinematically independent generalized
velocities. This allows to write the equations of motion in
the canonical form of Lagrange-Rayleigh classical mechan-
ics. It is done in extending the collective space by including
into it the coordinates associated with the distribution of
nucleons in the momentum sector of the phase space. This
makes the model equivalent to the “transport theory” ap-
proaches of nuclear dynamics defined in an extended space
of coordinates.

One of the advantages of such a formulation is that it
does not contain any ambiguity in the estimation of the
collective energy transformed into the energy of statistical
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excitation. Another advantage lies in the easy access to the
treatment of fluctuations of collective observables [5]. This
possibility has not yet been fully exploited waiting for our
study (in progress) of the whole process of fusion including
the evolution in the compact configuration formed by the
colliding nuclei.

Let us recapitulate the main results obtained in this
way:

– The properties of the 3-dimensional potential energy
surface have been examined. The saddle-like configu-
ration is found lying on the border of compact config-
urations formed by very deformed ions.

– The study shows the role of the inertia forces. Due to
them the trajectories of the fusing system do not follow
the valley in the potential energy surface. This effect
is pronounced more in the motion of the heavier ion
than in the motion of its lighter partner.

– The estimation is done of the amount of dissipated col-
lective energy during the approach and compared with
the potential energy decrease due to the polarization
of ions. For the reaction 40Ar + 208Pb the two effects
nearly compensate each other.

– The polarization of ions via excitations of the isovector
dipole mode is also examined but found to be very
small.

– The combined effect of the polarization and dissipation
of the collective energy during the approach diminishes
the energy needed for establishing the contact between
the ions by about 4MeV. However, the “separatrix”
trajectory, at which the unification of 40Ar and 208Pb
nuclei becomes possible, corresponds to the collision
energies greater than needed for establishing the con-
tact between them.

The microscopically determined potential energy sur-
faces possess numerous saddle point configurations corre-
sponding to different overlaps of colliding ions. The poten-
tial energy in the saddle point discussed in the paper may
be regarded as a barrier for the formation of the compos-
ite system with the lifetime sufficient for the equilibration
in the motion of individual nucleons.

The fusion becomes possible if the trajectories sur-
passing this saddle point are not stopped before reach-
ing the other saddle points. If not, the reactions different
from the fusion (e.g., quasi-fission) will take place at en-
ergies lower than necessary for surpassing other saddle
points. One may say that in general each type of reac-
tion demands different amount of an extra push energy.
This remark recalls the experimentally found difference in
the outcomes of 48Ca + 238U and 48Ca + 244Pu reactions:
the quasi-fission is observed at an energy lower by about
10MeV than needed for the formation of the Z = 112 and
Z = 114 compound nuclear systems [1].

We think that the formalism presented here will be
useful in the future theoretical investigations in this do-
main for studying the problems left outside of consider-
ation here: for the treatment of the all possible sources
of dissipation, for learning more about the “window fric-
tion” and about the driving forces in the mass asymmetry
collective coordinate etc.

Appendix A. Quantum substratum of the

approach

Equations (24) determining the collective part of the zero-
point kinetic energy and the intrinsic collective variables
ζi are an heritage of the quantum (many-fermionic) nature
of nuclei.

One comes to the relations (24) using the results of
refs. [22,23] from which it follows that in the diabatic (op-
posite to the “viscous”) regime, when the dissipation is
absent, the quantity

Ω
(i)
3 ≡

(

m3V 2
i

3
∏

µ=1

Π(i)
µ,µ

)1/6

is an invariant of motion. This quantity, having the dimen-
sion of the Planck unit h̄, represents the volume occupied
by the nucleus in the 6-dimensional phase space of one
particle. Its conservation is inherent in the Hartree-Fock
theory in which the wave function is approximated by a
single Slater determinant containing time-dependent one-
particle functions. In the quantum description the con-
figuration mixing is caused by the correlation term and
appears in the approach of this paper in the form of the

collision integral. The conservation of Ω
(i)
3 is established

in [22] using the virial theorems approach and also in
ref. [23] where it is deduced on the basis of more sophisti-
cated mathematical technique (both papers deal with the
motion including the rotational currents and present the
invariant in a more general form). When the differences

between the quantities Π
(i)
µ,µ corresponding to different µ

values are small and the volume Vi is fixed one arrives at

eq. (24) expanding Π
(0)
‖ in a Taylor series in

Π
(i)
‖ −Π

(i)
⊥

Π
(i)
‖ +Π

(i)
⊥

at a fixed value of Ω
(i)
3 .

The quantum counterpart of ζi is the “shift operator”
transforming one intrinsic state into another. The quan-
tum states involved in the dissipation correspond to differ-

ent values of Ω
(i)
3 and lie in the region of energies around

the centroid of the GQR. The density of quantum levels
here is extremely high, and the proposed classical treat-
ment of quantum properties seems to be justified.

Appendix B. Renormalization of the mean

relaxation time

Note that in the derivation of βwall
i only the “one-body”

dissipation effects are included. The mean relaxation time
approximation, used in the paper, considers the dissipa-
tion as being produced by the collisions of nucleons, i.e.

has rather a two-body origin leading directly to the equi-
libration in the distribution of nucleons in the momentum
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space. It affects the collective motion by its coupling with
the intrinsic motion. The inclusion into the theoretical
scheme of other than qi global collective variables (such
as the higher multipole moments in the matter distribu-
tion) involves additional nuclear characteristic depending
on the distribution of nucleons in the momentum space
(see refs. [8,9]). This in turn introduces additional terms
in the dissipation function. Hopefully, they could be ac-
counted for by re-normalizing the mean relaxation time
parameters τi.

Among the other global nuclear characteristics the oc-
tupole moment in the matter distribution seems to be of
a particular importance. It is related with the mass asym-
metry whose evolution is found to be of an utmost impor-
tance for the outcome of the heavy-ion collision. Consider-
ing here only the phase of approach, when the “window”
between the ions is closed and the asymmetry degree of
freedom is frozen, we leave for future studies the inclusion
of this degree of freedom into the model.
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